- Data Analysis, Machine Learning, Mathematics, Statistics
- Data Analysis:
- Data Processing
- Data Cleaning
- Data Scraping
- Data Modeling
- Data Visualization
- Finding Insights
- Making Conclusions + Recommendations
- Machine Learning and Deep Learning with (un)structured data
- Computer Vision
- Natural Language Processing
- Reinforcement Learning
- Transfer Learning
- Multiple class Classification
- Statistics
- Linear Regression
- Logistic Regression
- Probability
- Distributions
- Maximum Likelihood Estimation
- Transformations
- Bootstrapping
- Data Generation Processes
- Bayesian Methods and Inference
- Time Series Analysis
- Data Analysis:
- Programming
- Python, R, SAS, Stata, Java, etc.
- Python Libraries:
- TensorFlow, Keras, PyTorch, sklearn, tkinter, numpy, pandas, matplotlib, BeautifulSoup, seaborn, etc.
- R libraries:
- tidyverse, ggplot2, dplyr, shiny, knitr, lubridate
- Python Libraries:
- Python, R, SAS, Stata, Java, etc.
- Economics
- Game Theory, Experimental Design, Price Discrimination.