Data Science and AI

  • Data Analysis, Machine Learning, Mathematics, Statistics
    • Data Analysis:
      • Data Processing
      • Data Cleaning
      • Data Scraping
      • Data Modeling
      • Data Visualization
      • Finding Insights
      • Making Conclusions + Recommendations
    • Machine Learning and Deep Learning with (un)structured data
      • Computer Vision
      • Natural Language Processing
      • Reinforcement Learning
      • Transfer Learning
      • Multiple class Classification
    • Statistics
      • Linear Regression
      • Logistic Regression
      • Probability
      • Distributions
      • Maximum Likelihood Estimation
      • Transformations
      • Bootstrapping
      • Data Generation Processes
      • Bayesian Methods and Inference
      • Time Series Analysis
  • Programming
    • Python, R, SAS, Stata, Java, etc.
      • Python Libraries:
        • TensorFlow, Keras, PyTorch, sklearn, tkinter, numpy, pandas, matplotlib, BeautifulSoup, seaborn, etc.
      • R libraries:
        • tidyverse, ggplot2, dplyr, shiny, knitr, lubridate
  • Economics
    • Game Theory, Experimental Design, Price Discrimination.